
CENTER FOR PURE AND APPLIED MATHEMATICS

UNIVERSITY Oi CALIFORNIA,, BERKELEY

PAMI- 352

TSOLVE A REAL CUBIC EQUATION

W. KAHAN

NOVEIMBER i198 .

8 ~ 04577

This report was done with support from the Center for
Pure and Applied Mathematics, Any conclusions or
opinions expressed in this report represent solely
those of the author(s) and not necessarily those of
the Center for Pure and Applied Mathematics or the
Department of Mathematics.

Cubic1 WORK IN PROGRESS Nov. I'). 1986

To Solve a Real Cubic Equation
(Lecture Notes for a Numerical Analysis Course)

W. Kahan

Mathematics Dep't

University of California
Berkeley CA 94720

Nov. 10, 1986

Abstract: A program to solve a real cubic equation efficiently and as
accurately as the data deserve is not yet an entirely cut-and-dried affair,
An iterative method is the best found so far. This method plus some other
issues, like accuracy, scaling, preconditioning and testing, are
discussed in these notes in enough detail to convey an impression of what
Numerical Analysis is about.

1. Introduction:
Closed-form formulas for solving the real cubic equation

Ax3 + Bx 2 + Cx + D = 0
in terms of its coefficients A, B, C, D were discovered in the
sixteenth century by Italian mathematicians, but their triumph
turned into disappointment when they discovered an irreducible
case: the real cubic with three irrational real roots. This case
entails unavoidably the computation of trigonometric functions and
their inverses during the evaluation of cube roots of a complex
number. Nowadays trigonometric functions and complex numbers seem
unobjectionable in a procedure that solves a cubic,. so they have
been used freely in a modern version of the Italians' formulas
presented below in §2 of these notes. Alas, the modern formula
is disappointing too, because it is potentially unstable in the
face of roundoff. Indeed, coefficients abound for which some of
the roots computed from the formula are quite incorrect: several
instances appear among the examples presented in §10 .

Whether a slight modification could protect the Italians' formulas
from the worst effects of roundoff remains an open question. The
simplest stable version of those formulas I know is tantamount to
evaluating them twice, as is mentioned near the end of §2 . Two
evaluations take long enough to make plausible the possibility
that another approach might be faster.

Newton pioneered another approach when he first used the iteration
that now bears his name to solve a cubic. Computers can tollow
his approach provided certain details like where to start and when
to stop are mechanized. Those details are the subject of § ,A
long discussion that culminates in a brief but entirely automatic
procedure presented as a program QBC in §4 . That discussion
provides merely a motive for the program, not a proof of its
correctness. A thorough proof would be far too lengthy to include
in these notes. Instead, the issues that such a proof would hive
to address will be explored and its conclusions summarized.

4V I4
'la

Cubici WORK IN PROGRESS Nov. 10, 1986

The most difficult issue is inaccuracy caused by roundoff. Error
analysis proves that every root computed by QBC is no more in
error than if it had been computed exactly from a cubic whose
coefficients differ from those given each by a few units in its
last digit carried by the computer's floating-point arithmetic.
This kind of Backward Error Analysis was first published in the
late 1950's by James H. Wilkinson. It suggests that inaccurac-
introduced by the process of solving the cubic is unlikely to be
appreciably worse than inaccuracies previously introduced when the
coefficients were computed and rounded off. Therefore, if rootFs
obtained from QBC turn out too inaccurate for some ulterior
purpose, the trouble may lie not so much with QBC as with the
process that generated the coefficients. Thus does backward err:r
analysis exculpate the programmer of QBC. And it does more.

The uncertainty contributed to the computed roots by roundoff in
QBC can now be assessed by analyzing the effects upon those roots
of tiny perturbations of the cubic's coefficients, regardless of
the internal details of QBC . Even without those details, the
analysis is tedious; only its conclusions are summarized in 05
Computed roots turn out normally to be accurate in all but their
last few digits; but in worst cases, when all three roots of the
cubic almost coincide, the computed roots can lose as many as two
thirds of the figures carried. Examples in §5, §7 and §10 bear
out this gloomy prediction, to which we shall return later-.

Besides being too long to include in these notes, the proofs o
the foregoing claims to accuracy are at least as vulnerable to
error as the short program they are supposed to vindicate. Such
claims deserve credence only if they are supported by numerical
experiments. But rounding errors committed during the experiments
can confound the test results and obscure their implications. 96
discusses such issues and offers a partial remedy in the form of a
program REVAL that combines the evaluation of a cubic polynornin!
with the simultaneous calculation of a rigorously correct bound
for the effect of roundoff upon that evaluation. REVAL is based
upon prior knowledge of a bound for the rounding error in every
floating-point arithmetic operation; that bound is characteristic
of the computer and deducible from attributes like the number of
significant digits it carries. REVAL and programs like it permit
the error in a computed root, regardless of its provenance, to
be overestimated with ease as rigorously as one likes and without
excessive pessimism provided the root lies far enough away from
all the others. Clustered roots are a little harder to handle.

Th previous two paragraphs may suggest (and it's widely believed)
that clustered roots of a cubic cannot be calculated accurately
unless arithmetic is performed carrying about three times as rany
significant figures as will be assuredly correct in the computed
roots. That is untrue. Also untrue is another widely believed
myth about numerical computation, namely that numerical error i0:

caused by canceliation. in fact$ =n almost all modern computers,
no new error is generated when subtractive cancellation occ..rs;
the principal exceptions are CRAYs, CYBERs and UNIVACs. On IRM
370's, DEC VAX's, SUN's, APPLE Macintoshes and Hewlett-FackarH
calculators, to mention just a few, subtractive cancellation is
exact. This fact can be exploited to Precondition a cubic with

2

Cubic! WORK IN PROGRESS Nov. 10, 1986

clustered roots, transforming it into a new cubic with relatively
well separated roots that are easy to calculate and transform back
into fully accurate roots of the original equation. A simlified
version of preconditioning, applicable principally to cubics with
integer coefficients, is described in §7 with examples that may
s'ggest how the process would work in general. Thus have we
confronted two myths about roundoff and cancelled them both.

After roundoff, the second hazard to be overcome during numerical
computation is spurious over/underflow, an event that occurs when
intermediate results would be so huge or so tiny as to lie outside
the range of numbers normally representable in the computer even
though the desired final results lie within range. This hazard is
encountered only rarely, and then it can be overcome by Ocaling,
which is described in §8 .

The final few sections of these notes are archival. §9 presents
a collection of cubics with known zeros that help to test programs
like QBC or its competitors. §10 exhibits selected but typical
results obtained from our versions of the Italians' formula and of
Newton's iteration (QBC) programmed into an HP-15C handheld
calculator. The program for QBC is supplied in §11, and the
running times for both methods are compared briefly in §12

2. A Formula in "Closed Form" :
A cubic polynomial Ax3 + Bx 2 + Cx + D has three zeros x = xj,
x2, x3 that can be expressed explicitly in terms of its given
coefficients A, B, C, D in many ways. The formula chosen below
is one of the better ones, and has been arranged in the form of
an algorithm that can easily be programmed into a computer:

A, B, C and D are given real numbers.
If A = 0

then I X3 (IBI + ICI + IDI)/A ; ... 00 or 0/C)
p := -C/2 ; ... Next solve BX 2 - 2px + D = 0
q := '(p 2 - B D) ; ... possibly an imaginary number.
if q is Real ... , in which case q > 0

then t r := p + sign(p)q ; ... = p t q ...
if r - 0

then f ... Zeros are 0 or M0 or 0/0
x, := D/B ; x2 := -x 1 }

else C x, := D/r x2 = r/B 1.

else t x, :- p/B + q/B ; X2 p/B - q/B 3 3
else I b := -(B/A)/3 c := C/A : d := D/A ;

Now solve x& - 3bx2 + cx + d =0 ...
s =3b 2

- C
t (s - b2)b - d ;to

Now x - b - where sy - Y3 - t ... Mac
if s= 0

then t y = -t' ... the real cube root.
y2 "= y, (-I + -V7)/2 -1

else t u /(4s/3) ; ... possibly imaginary.
v "= arcsin((3t/s)/u)/3 ; ... may be complex.
w : (n/3)sign(Re(v)) - v ; ... = +t/ - v
y, = u sin(v) Y2 U sin(w) } ; Codes

x, := b - y ; x2 = b - y2 x = y, - Y2 + b J• . /or
- *- , pecia1

Cubicl WORK IN PROGRESS Nov. 10, 19e6

This algorithm was programmed into an HP-15C calculator without
difficulty. On many another machine programming might be impeded
by the absence of complex sin and arcsin from its library of
elementary functions. Then the following formulas may help-

If .,::> 1 then arcsin(z) = (n/2 - z arccosh(:IZ)) z/Iz
I-f z is real, arcsin(zz) = arcsinn(z) ,

cos(1z) = cosh(z) , and
sin(cz) = Lsinh(z) . (Z = V-I

With the aid of these formulas and some algebraic manipulation4
the algorithm can be freed from all nontrivial complex arithmetic,
but only at the cost of introducing more case analysis. In place
of the formulas involving complex arcsin and sin, there will.
be three cases. One case handles s < 0 . If s 0 (in which
case U 0 too), there are two more cases according to where
13t/(su)l lies relative to I . But multiplying cases can only

exacerbate the first of three flaws that mar the algorithm-

First, the algorithm is complicated, and therefore vulnerable to
oversights. Have all singularities been considered and handled
correctly?

Second, the algorithm is vulnerable to over/underflow. Even when
all three zeros lie well within range, over/underflow can blight
the intermediate quantities q, r, s and t . The natural defense
against over/underflow is scaling , another complication.

Third, the algorithm is vulnerable to roundoff, particularly
when the zeros are of wildly different magnitudes; then the zeros
of smaller magnitude tend to be computed relatively i.naccurately.
(Examples of inaccuracy can be found at the end of these notes.)
All figures can be lost in any zero whose magnitude is smaller
than a rounding error in b . One way to calculate the tiniest
zero more accurately is to obtain it as the reciprocal of the
biggest zero of A + Bz + Cz2 + Dz3 , which is tantamount to
running the foregoing algorithm a second time. To compute the
zero of middle magnitude, divide -D/A by the other two zeros.

Another way to improve the accuracy of a zero is to use some kind
of iteration that improves approximate zeros by exploiting the
cubic's behavior near them; a short step past this thought finds
us contemplating whether the cubic might be better solved by an
altogether iterative method than by explicit formulas. Just such
an iteration is the next topic discussed in these notes.

3. Newton"s Iteration:
Given the real cubic polynomial Q(x) := Ax3 + Bx2 + Cx + D we
may use iteration X., 4= X, - Q(X,)/G1(X.) for n = 0, 1, 2, ...
to find a real zero of Q(x) provided we can solve four problerns:
- How shall Q(X)/Q'(X) be calculated efficiently?
- Where is a good place to choose the starting iterate Xo ?
- When should the iteration be stopped?
- Having found one zero, how do we find the other two?

4

Cubicl WORK IN PROGRESS Nov. 10, 1986

The following scheme computes Q(X) and Q'(X) at the cost of
4 multiplications per iteration:

qo "= AX ; q, "= qo + B ; q2 qX 4- C
Q' (X) (qo + qI)X + q 2 DQ(X) q2 X + D

Three preliminary divisions of all the coefficients of Q(x) dy
A could subsequently save one multiplication per iteration, but
doing so would exacerbate roundoff and raise questions about over./
underflow, questions best answered by scaling all coefficients o
0(x) in advance in a way to be discussed in §8 below.

Finding a good starting iterate Xo is a balancing act among many
contending considerations. First comes the numerical stability of
the deflation process by which, after a real zero has been
computed, it will be removed from the cubic to yield a quadratic
whose zeros are the remaining two zeros of the cubic. The process
of deflation is numerically stable unless the zero being removed
is much tinier than one zero of the quadratic but much bigger than
the other. Xo can be chosen to avoid that unstable situation.

A second consideration is speed. Newton's iteration converges
very quickly if started close enough to a simple zero, but
converges very slowly to a multiple zero. Therefore, Xo should
ideally be extremely close to a triple zero, if Q(x) has one,
or else much closer to a simple zero than to a double zero if
O(x) has both of those. Here is a way to choose such an Xo

Assuming AD 0 0 , let b -(B/A)/3 ; r " (b)/A''_ . ;
and s := sign(Q(b)/A) = +1 . If Q'(b)/A > 0 then X = b - sr
else Xo := b - 1.324718 s max~r, /(-Q'(b)/A)} . Why does this
choice work? The next paragraph will explain. To better follo:.w
its argument, read it repeatedly with re~erence to the graphs of.
say, x3 + Px + 2 for 9 = -9, -3, -1,), I and 3 superposed
upon each other to show how its leftmost real zero increases with

. That leftmost zero is the goal of the iteration.

Why start iterating at X* 7 Observe that Ql(b) = C) ; therefore
x = b at the inflexion on the graph of Q(x.,) , and furthermore
Q(b-y) = 0(b) - Q'(b)y - Ay3 . If 0'(b)/A > 0 then this cubic
is strictly monotonic with just one real zero y that must lie
between y = 0 and y = sr ; otherwise the real zero y farthest
from 0 lies beyond y = sr and beyond y = s,(-Q'(b)/A) too,
but not beyond both Xsr and Nsv(-Q'(b)/A) , where X is the
real root X = 1.32471 79572 44746... of X = X + I . Since the
desired real zero X lies between the starting iterate Xo and
the inflexion point b , and the cubic is monotone between X and
Xo, Newton's iteration converges monotonically and rapidly to the
desired real zero. In the special case that Xo = b no further
iteration will occur because then b is the cubic's triple zero.

When should the iteration X,., "= X, - Q(X)/0'(X.) be stopped?
Except when X* = b , we would expect sign(X.., - X) = s for
all n ; but that expectation cannot persist indefinitely in the
face of roundoff. Ultimately roundoff must cause X.., -- X to
vanish or take the wrong sign, or cause Q'(X,) to vanish. in

either case we shall set X 4= X, and accept it as a real zero of
the cubic. Since any iteration could take too long to home in to
X =0 , which occurs if D = 0 , that case is segregated. And

5.

Cubicl WORK IN PROGRESS Nov. 10, 1986

the quotient 0/0' must be replaced by (Q/Q')/1.UO.. .001 to
overcompensate for roundoff that could otherwise carry X, too
far beyond its goal. When X is extremely tiny, that extra
division prevents X, from jumping over X to 0 , as otherwise
it would in one of the examples in §10 . Roundoff can cause yet
another kind of overshoot when the cubic's three zeros are closely
clustered; X. can fall between two zeros. We avoid the worst
effects of this overshoot by accepting X = 4. instead of .
Our policies for handling roundoff and stopping the iteration are
not the only possibilities, but they are among the simplest.

With one real zero X in hand, the next task is deflation to
obtain the quadratic Ax 2 + Blx + C2 whose zeros are the two
remaining zeros of the cubic. Here are the deflation formulas:.

If IX3 1 > ID/Al then C C2 -D/X ; B, (C 2 - C)/X }
else < B, AX + B ; C2 = BX + C

recall qt and q2 above)
One formula for C2 comes from the product of the cubic's zeros,
-D/A = X C2 /A . The choice for B, was derived from an error-
analysis that looked at the sum of the zeros, -B/A = X - /A
and at the sum of their reciprocals, -C/D = I/X - 8,/C 2 * to
find out which is least perturbed by the error in X . Of course,
different formulas have to be used when A = 0 or D = 0 .

Finally, formulas for solving a quadratic equation are taken from
the algorithm presented earlier.

4. Iterative Algorithm QBC :
The following algorithm, arranged to facilitate programming, is
complete except for scaling precautions against over/under flow.
It is broken into subprocedures that make it easier to understand.

Real Function DISC(a, b, c) :- b 2 - ac ;
... Later, during the discussion of Preconditioning in §7
... another version of DISC will be presented that is more
... accurate when a, b, c are all integers and not too big.

End DISC .

Procedure QDRTC(A, B, C, X,+(Y, X2 +1Y 2):
... Given real coefficients A, B, C , this procedure delivers

the two zeros Xj+aYj of the quadratic Ax 2 + BX + C

b :=-8/2 ; q := DISC(A, b, C)
If q < 0

then C X, = b/A X2 := X, ;
Y, := /(-q)/A ; Y2 := -Y, }

else F Y, := 0 ; Y2" 0
r = b + sign(b)V/q .. = b + s'q
If r = 0

then C X, = C/A ; 2 := -X,
else C X, = /r ; X2 r/A - 2

Return : End QDRTC

6

Cubicl WORK IN PROGRESS Nov. 10, 1986

Procedure EVAL(X, A, B, C, D, 0, Q', B,, C,):
... Given real X and real coefficients A, B. C, D of the
... cubic Q(x) = Ax3 + Bx2 + Cx + D , this procedure cornutes

Q = Q(X) , Q' = Q' (X) , B, := AX+B and C2 :=BIX4+C .
qo = AX; B, := q+B C2 := BX + C
Q' (qo+B,)X + C 2 0 C 2X + D
Return End EVAL

Procedure QBC(A, B, C, D, X, X,+ZY,. X2 +IY 2):
o.. Given real coefficients A, B. C, D of the cubic
... Ax 3 + Bx 2 + Cx + D , this procedure computes a real zero X

and two complex zeros Xj+zYj of the cubic.
If A = 0 then C X := ; A := B : b, = C ; c 2 D

go to fin }
If D = 0 then C X := 0 ; b, B ; c 2 C

go to fin }
X = -(B/A)/7 : call EVAL(X, A,B,C,D, q, q', b,, c2,
t q/A ; r := 3 sItl s := sign(t ; ... = 1
t -q'!A if t >0 -. :4 en r 1.324718rr ax(r, Vt)
x0 X - ; if xo = X then go to fin
Do C X = xo call EVAL(X, AB,C,D, q, q', b,, c2)

if q' = 0 then x0 = X
else xo X - (q/q')/1.00. .0)0)1 }

until sx0 < sX ; ... stop when xo V X
If IAIX2 > ID/XI

then t c2 := -D/X ; b,:= (c2 - C)/X ;
fin: call QDRTC(A, b,, c 2, X1+1Y%, XM+IY 2

Return ; End QBC

5. Accuracy:
A rigorous assessment of the effects of roundoff upon QBC would
be too complicated to include in these notes, but the conclusions
from such an assessment will be stated here, followed later in
§6 ("Testing Considerations") and §7 ("Preconditioning") by
some suggestions about what can be done about those effects.

Provided over/underflow does not intrude, QBC's combination of
iteration and deflation always produces results scarcely worse
than if the cubic's coefficients had each been perturbed by a few
rounding errors at the start. In the worst case, when the three
zeros of the cubic are all relatively nearly coincident, they may
be correct to as few as a third of the figures carried; such a
loss of accuracy also may afflict the closed form formula in that
case. The phenomenon is illustrated by the following example:

Consider the cubic x3
- 3x 2

+ 3x - (l-S) , where I-S is the
number next less than 1 representable in the floating-point
format used during computation. The zeros of this cubic are the
three values of I - a .3 . For instance, if 1.2 sig. dec. are
carried during computation, 1-s = 0.9999 9999 9999 and the real
zero I - 0/3 = 0.9999 . Changing the coefficient I-a in its
12th sig. dec. to I changes all three zeros in the 4th to I

In other examples, with two nearly coincident zeros relatively
far from the third, about half the figures carried can be lost

7

Cubic2 WORK IN PROGRESS Nov. 8, 1986

regardless of how the cubic is solved. But QBC never loses all
the figures carried, as the closed-form formulas can. Examples
to show what can happen will be presented later. Here is A
summary of the conclusions that can be drawn from error analysis:

Each zero Z computed by QBC's combination of iteration and
deflation is accurate almost to whichever is the largest of ...
- as many figures as were carried less the sum of the numbers of

figures to which the other two zeros agree with Z or
- half of the excess of the number of figures carried over the

number of figures of agreement between Z one of a Qa.Ir
of coincident or nearly coincident zeros, and a third zerc:
relatively different from the pair, or ...

- a third of the figures carried, if all three zeros are
coincident or nearly coincident with Z .

No way is known to calculate the zeros of a cubic more accurately
than if its coefficients had first been perturbed by roundoff.
unless part of the calculation is performed exactly -- with ro
roundoff at all. That exact calculation is part of a procas-;
called "Freconditioning", which will be described later in f7

6. Testing Considerations:
The obvious way to test QBC is to supply it with arguments for
which accurate results have been calculated by some other method.
and then compare. On reflection, this test procedure is not so
obvious. What other method will give accurate results? CubiCs
can be constructed with small integer coefficients and at least
one zero expressible as a ratio of small integers; but small
integer input data might fail to stimulate typical rounding
errors. And if results differ from what might ideally have been
expected, how does one decide whether the differences are
tolerable consequences of unavoidable rounding errors, or
symptoms of a defect in the program that must be repaired?

A simple procedure that seems at first free from the dilemmas is
to reconstruct the cubic from its computed zeros X, Y, Z by
expanding A(x-X) (x-Y) (x-Z) in powers of x . If the cubic so
reconstructed matches the given cubic well enough, the program
that computed the zeros cannot be too wrong. But how well is
"well enough" ? Presumably the reconstruction need match no more
accurately than if X, Y and Z were correct zeros each rounded
off to working precision (though actually they might be far lass
accurate than that); and the rounding errors that accrUe during
the reconstruction process have to be allowed for too. It's not
so simple after all.

Program testing is fraught with anxiety unless one can estimate
mathematically how big the errors should not be. Such an estimate
of uncertainty can be very difficult; I would much rather have tc.
write a program than have to analyze its errors or test it.

The program REVAL below computes a rigorous and fairly sharp
bound 6 for the contribution of roundoff to the computed value
0 of a cubic Q(z) := Az3 + 8z 2 + Cz + D at the same time as it
computes Q REVAL requires knowledge about bounds for every

8

Cubic2 WORK IN PROGRESS Nov. 8, i986

rounding error committed by the computer in response to statements
like " s "- x+y ; d "= x-y ; p := X*y in a program.
These assignments store in the computer's memory values s, d and
p slightly different from the ideal sum, difference and orod,.ct
desired. Almost every modern computer's arithmetic has its own
characteristic tiny constants z and 8 that satisfy

Is - (x+y) I S Isl , td - (x-y) I " S Idi , IP - ,*y 1 1
for all non-pathological values x and y representable in the
computer (ignore M and over/underflow for now) .dealiv

= = (1.000... 001 - 1.000... 000) /2
but some computer arithmetics are somewhat worse, and many suffer
larger values of s for complex multiplication than for real.

To apply the foregoing inequalities to the error analvsis of anv
program that computes Q , first decompose the program into a
sequence of simple assignments like

qo := A*z q, := qo + B ; ... ; q3 :=q*z q3 + D
Then replace them by the inequalities they actually satisfy-

Iqo - AzI < AzI ; 1q, - (q0+B) I < $Iq! .
Iq -q 2 zI S I q2 zl - (q3 4DI S I

These several inequalities boil down to one of the form
IQ - (Az3 + Bz2 + CZ + D) I <

wherein A is expressed in terms of a and S and various
computed values- Hence, A can be computed too thus:

Procedure REVAL(Z, A, B, C, D, Q, 6):
... Given real coefficients A, B, C, D , this procedure yields
... an approximation Q to Q(Z) = AZ + BZ 2 + CZ + D and a

bound 6 _ IQ-Q(Z)f , which would be zero if no roundoi-g
occurred. Instead, constants S and i that reflect the
computer's roundoff must be put into the program. A bigger
S may be needed for complex arithmetic than for real.

e "= AW/I(+8) ;

q, A Z +B : e = IZI e + 1q, I
qa := q1 Z + C ; e = IZI e + 1q2 ;
Q = q2 Z + D & (-+8) IZIe + I.IS
Return ; End REVAL .

How might REVAL be tested? After proving that no computed value
of Q can differ from an accurate evaluation of Q(Z) by more in
magnitude than 6 , we have to show also that the error bound 6
is not so pessimistic as to be useless. Among large collections
of trial data, A should sometimes barely exceed I0 - Q(Z)! ;
the only way to verify this is to compute 0(Z) more accuratel,;.

This procedure REVAL can serve to test the quality of Z as an
approximate zero of the cubic; compute the quotient 10!/6 . A
quotient no bigger than 2 , say, indicates that no substantial
improvement in the accuracy of Z is likely to be achieved unless
arithmetic is carried out to higher precision. Of course, if You
believe QBC works correctly you must believe that I'1/A will
be fairly small at every computed zero, in which case you'll not
bother to compute that quotient. But REVAL. has another use.

9

Cubic2 WORK IN PROGRESS Nov. 8, 1986

A bound upon the &rror in any approximate zero Z can be derived
from REVALs bound n ? 10- Q(Z) I , among other things, no
matter what the provenance of Z . If Z is accurate enough, one
step of Newton's iteration from Z to Z - O(Z)/0'(Z) nearly
doubles its number of correct digits, in which case Q(Z)/Q'(Z)
must approximate the error in Z fairly closely. That quotient
is never much smaller than the error because, in general, 0(z)
must have a (possibly complex) zero z no farther from Z than
310(Z)/Q'(Z) I , according to a theorem of Laguerre. REVALs
?I0+6 overestimates IQ(Z)I and an estimate of 0mZ) ,oes

either from AZ 2 + q,Z + q2 , as in EVAL, or Trom A(Z-X)(Z-Y)
where X and Y approximate the other two zeros of the cubic. One
way or another, (fQI+6)/1Q'(Z) I provides at least a rough bound
for the error in Z .

A rigorous error bound derived from Laguerrecs theorem requires
a rigorous lower bound for IQ'(Z)I , which could be obtai-ed
from an augmented version of REVAL that accounted for roundoff s
contribution to Q(Z) as well as to M(Z) . Alternatively, m
approximate zeros X, Y, Z are in hand, three calls to REM L
would help overestimate the right-hand sides of the inequalities

Ix-XI < 31Q(X) I/IA(X-Y) (X-Z)I ,
Iy-YI < 3IQ(Y)I/IA(Y-Z)(Y-X)I and
Iz-Zl < 31Q(Z) I/IA(Z-X) Z-Y) I ,

which rigorously bound the true zeros x, y, z of Q unless they
are clustered so closely that these three estimates overlap. But
rigorous bounds differ significantly from the previous paragraph's
rough bounds only when zeros are clustered, and then time spent
to get rigorous but probably dismal bounds might be better spent
computing more accurate zeros with the aid of preconditidning.

7. Preconditic ning:
Since error bounds are so often pessimistic, one might suspect
that error analysts are pessimists too. Actually, error analysts
are less interested in over-estimating error than in diminishing
it. One way to diminish roundoff error is preconditioning, a
process that transforms a problem hypersensitive to roundoff into
a problem that is similar but far less sensitive.

The simplest illustration o4 the process concerns a quadratic
equation in the form

aX2 - 2bx + c = 0,
a form more convenient for our purpose than the usual form
A 2 + Bx + C = 0 from which we get the desired form by setting
a "= -2A, b := B and c "= -2C . This equation is hypersensitive
to rounding errors and also to any other perturbations of its
coefficients just when its roots are relatively nearly coincident,
in which case computed roots can be inaccurate in almost half the
figures carried. For instance, when a = 100002 , b = 100001
and c = 100000) , the true roots x = I and x = 0.999980)004...
differ in their 51" digits from the double root x = 0.99900002
computed on a 10-digit calculator using the familiar formula

x = (b + (b 2-ac))/a
but the computed roots are just what would have been obtained in
exact arithmetic had the coefficients b and c first been altered
in digits beyond their 10th to b = 100001.00000 00004 and

1 0

Cubic2 WORK IN PROGRESS Nov. 8, 1P86

c = 100000.00001 00005 99996 00008 . Such tiny perturbations are
enough to c-ause relatively serious errors in V(b2 -ac) , errors
avoidable only by carrying in worst cases twice as many sig. dec.
in our computations and honoring twice as many sig. dec. in the
coefficients as we wish to guarantee correct in computed roots.

When are the coefficients likely to be known so accurately? Most
likely when they are known exactly, and then most likely when
they are integers. Therefore, let us consider the case when a
b and c are all integers and, to simplify the exposition, let
us assume that they are representable exactly in floating-point
with a digit to spare. This means integers with no more than 9
digits on a 10-digit calculator, no more than 21 bits on a
computer that performs binary floating-point with 24 sig. bits.
If the coefficients were rather smaller than that, so small that
the products b2 and ac were both representable exactly, then
the discriminant q "= b2-ac would be fully accurate enough to
produce entirely satisfactory results from a program like QDRTC
above. That state of affairs is the goal of the preconditioning
function DISC presented below. Without changing q = b-ac ,

it successively diminishes the integers a. b, c until either aC
is negative or it differs enough from b2 that DISC "= b2 - aC
can be computed contaminated only relatively slightly by roundof;.

Real Function DISC(a, b, c):
... Given integers a , b , c all small enough to fit exactly
... into floating-point with at least a digit to spare, return
... DISC = b 2 - a c with roundoff confined to its last sig. dec.

If a c) 0 then
t a lal ; c := Jcl

loop: if a < c then swap(a,) ; ... now 0 < c _ a
n := integer nearest b/c ; ... In-b/cI < 1/2
if n # 0 then ... (else b2 < c2 /4 K ac/4

t o = a - n b ; ... exact if M -a
if a > -a then ... (else 2b2 > ac)

{ b = b - n c .• Ibl L c/2
a "= - n b
if a > 0 then go to loop } } }

Return DISC "= b2 - a c ; End DISC .

After substituting this preconditioning function DISC for the
function DISC that accompanies the procedure QDRTC above, we
can compute the desired roots Xj+zYj of our quadratic to nearly
full accuracy by calling QDRTC(a, -2b, c, X+ Y,, X2 +ZY 2) .

When applied to our example above, DISC(100002, 100001, 100000)
finds n = I and reduces a , b , c successively to
4x = 100002 - 100001 = I , b = 100001- 100000 = I , a = I - I = 0
and then returns DISC I correctly having exploited massive
-ancellation without error. Here are some more examples:

11

Cubic2 WORK IN PROGRESS Nov. 8, 1986

a b c crude DISC refined DISC true b2-ac
3234424085 1160927837 416690270 398000000000 397448345600 397448345619
3234413351 1160928203 416690636 -89000000000 -89060331630 -89060331627
8952751441 1557625 271 0 114 114
8952751442 1557625 271 0 -157 -157
5309162499 2301700899 997864924 -6000000000 -5110876875 -5110876875

5309162499 2301700899 997864923 0 198285624 198285624
5309162499 2301700899 997864922 5000000000 5507448123 5507448123

All columns but the last were obtained from versions of DISC programmed into
the HP-15C, a ten-figure calculator. The last column comes from the HP-71B.
a twelve-figure machine, using a faster version of DISC that exploits the
INEXACT flag provided by IEEE standard p854, to which the HP-71B conforms:

DEF FNq(a,b,c) ... q := b^2 - a#c more accurately. (in RAS1C
iO = FLAG(rNX,O) ... saves and resets INEXACT flag.
'loop': bO = b*b @ aO = a*c ! ... Are they exact?

IF FLAS(INX,iO)=O OR aO<=O THEN GOTO 'fin'
IF ABS(c)>ABS(a) THEN aO=a @ a=c @ czaO ! ... swap(a,c)
bO = RED(b,c) @ n = IROUND((b-bO)/c) ... RED is IEEE rem
il = FLAS(INX,O) ... resets INEXACT flag.
aO = (a - nib) - n*bO
IF FLAG(INX)=0 THEN a a aO @ b = bO @ GOTO 'loop'

'fin': FNq = b*b - a*c @ END DEF

An idea similar to that in DISC , but applied very differently,
serves to precondition the cubic equation

q(x) := ax3 - 3bx 2 + 3cX - d 0
when all its coefficients except perhaps d are integers
representable exactly in floating-point with at least a digit or
two to spare. QBC will calculate the equation's roots but, in
the light of error analyses mentioned above, we must expect the
calculated roots to suffer badly from roundoff whenever they are
clustered. Fortunately that possibility, clustered roots, can
be recognized easily without any call upon QBC ; if all three
roots are nearly coincident then all three quotients b/a, c/b and

d/c must be nearly coincident too. In fact, a little algebraic
manipulation suffices to prove that the quotients match to beyond
twice as many sig. digits as are common to the roots. To exploit
this phenomenon, choose X to approximate all three quotients
rounded to no more sig. digits than are left unoccupied by the
first three coefficients; this means that all three productS \a.
Nb and Xc will be computed exactly in floating-point arithmetic.
Next replace x by X+y in the given equation to get a new cubic

qo+y) = ay 3 - 3b'y 2 + 3c'y - d = 0
which QBC can solve for roots y , whence . = N+y , much more
accurately than before. New coefficients must be calculated thl..'s-

d" " d - ,c ; c' " c - ,b b' := b - Na

d' d' - xc' cm c' - Xb' ;
d := d' -

Cancellation will occur in the first row without error; and if
rounding errors do occur later they will be far tinier than what
QBC would likely inflict upon the original coefficients. When
all three roots x are extremely close, so close that all three

12

Cubic2 WORK IN PROGRESS Nov. 8, Iq86

roots Y rnust be relatively nearly coincident too, no rounding
errors will occur during the calculation of the new coefficients
b', c' and d° , and then the foregoing transformation may be
repeated advantageously with a new tinier X .

When two roots are nearly coincident but relatively far -rom the
third, the three quotients above must be replaced by two values

(I/2) (bc - ad)/(b 2 - ac) and +*r((c2 - bd)/(b 2 - ac)

They can be shown to match to about twice as many sig. digits as
are in agreement between the two nearly coincident roots: and .

must approximate those two values rounded to at most half as manv
digits as are left unoccupied by the first three coefficients, so
that all three products X2 a,) 2b and Xc will be computed exactly
in floating-point arithmetic. Then the new coefficients and the
roots x = >+y may be calculated as above except when d turns
out to be small compared with aX 3 . In that special case, the
third root will be rather smaller than the two that are nearly
coincident, so it may well be computed more accurately from the
original coefficients than from the new ones. Moreover in case
d is small and not an integer, the formulas for d', d' and d*
should be changed as follows for better accuracy in the nearly
coincident roots X+y :

D "= integer nearest d ; = d - D
d' D - Xc ; d = d' - Xc' d" := (d' - Xc') + .

A detailed explanation to justify the foregoing procedures is too
complicated to include in these notes. Instead, a few examples
will illustrate the schemes' efficacy.

These examples were all worked out on an HP-15C calculator, which carries 10
sig. dec. First the zeros x of each given cubic q(x) were obtained from a
program like QBC , listed at the end of these notes, to see how inaccurately
it computes clustered zeros. Then quotients of coefficients were examined to
determine a choice of A from which new coefficients of q(x+y) were derived.
The intermediate results of this computation are displayed below with strings
of leading No's' to denote digits that cancelled off. Then QBC was rerun
to comoute the zeros y of q(x+y) , from which were obtained improved zeros
x = X+y whose correctness was verified on an HP-71B carrying 12 sig.dec.

9(x = 658x3 - 190125x2 + 18311811x - 587898164
gBC: x = 96.297 , 96.341 , 96.305
b/a = 96.31458967 c/b = 96.31458777 d/c = 96.31458582 :=96.
a = 658 b = 63375 c = 6103937 d = 587898164

b' = oooo9.6 c' = oooo924.5 d' = oooo89030.9
c= ooo.o2 do = ooool.55

d* a -o.376
Q(X,+y) 658y 3 - 2 8.8y2 + O.06y + 0.376
QBC: I+y = 96.22963935, 96.35706483 + 0.06974975204z

rubic3 WORK IN PROGRESS Nov. 10, 1986

Q(x) : 2212111x 3 - 73449x2 + 813x - 3
QBC: x = 0.01109692665 , 0.01105309961 + 0.0002009029481
b/a = 0.0110677 c/b 0.0110689 d/c = 0.0110701 X = .0111
a = 2212111 b = 24483 c = 271 d = 3

b' = -o0o7f.432 c' = -ooo.7613 d' = -o.oo81
c= Z 0.o3159631 du = 0.00o35043

d° = -0.000ooo289041
Q(x+y) = 2212111y 3 + 2 14 .2 9 6 3y2 + 0 .0 9 4 7 88 9 3y + 0.000000289041
QBC: x+y = 0.01109693006 , 0.01105309791 + 0.0002009034814c

1 is not critical, nor is a small rounding error in d . Here is the
previous example repeated with a different x := 0.01107
a = 2212111 b = 24483 c = 271 d = 3

b' = -oooo5.06877 c' = -ooa.o2681 d' = o.oooo3
CA = 0.0293012839 d' = 0.0003267867

d° = 0.000oo24214872..
Yet gBC delivers practically the same final results X+y as before.

Q(x) = 6111x 3 - 51792x2 + 109737x + 0.00623
QBC: x = -5.677209907to-8 , 4.237477594 , 4.237731105
(bc-ad)/(2(b2 -ac)) f((c2-bd)/(b 2 -ac)) = 4.237604349 N . = 4.24
a = 6111 b = 17264 c = 36579 D = 0 1 = d = -0.0062"3

V = -o8646.64 c' = -36620.36 d' = -155094.96
CA = ooo41.3936 d' = oool75.3664

d° = -ooo.148694
Q(x+y) = 6111y 3 + 25939.92y2 + 124.1808y + 0.148694
gBC: X+y = -o.ooooooo56 , 4.237583786 , 4.237624911
d is so tiny that the isolated root is best calculated directly from 0(x).

The foregoing discussion may promote a misleading impression that
preconditioning is worth while only if the data (coefficients) are
given exactly. Other circumstances do exist when preconditioning
helps, however. For example, the errors in the data could be
correlated in a way that is known to mostly cancel in the results.
Or the coefficients, though uncorrelatedly erroneous, may figure
subsequently in several related contexts among which consistency
of some kind is egsential even though ultimate accuracy is not.
For instance, suppose a program uses the zeros of the cubic and
also of its derivative; Rolle's theorem implies that the latter
zeros should lie between the former when they are all real, and :
theorem due to Gauss places the latter inside the convex hull o0f
the former when they are complex. If those relationships are
violated by clustered approximate zeros computed too inaccurately,
the subsequent logic of the program could malfunction. Adapting
that logic to disordered zeros can be far more complicated than
preconditioning in a way that protects their order from roundofi.
However, preconditioning procedures appropriate for noninteger
data go far beyond the scope of these notes.

14

Cubic' WORK IN PROGRESS Nov. 10 1986

8. Scaling Invariance vs. Over/Underflow:
The factored -form cf the cubic

Ax + Bx 2 + C x + D = A (x - X) (x - Y) (x - Z)
provides a factorization for the scaled cubic
(TA)x 3 + (1 B 9)X 2 + (TCp 2)x + (.rDp 3) = ,A (x - 9X) (x - Y) (x - pZ)
If the scale factors T and p are powers of the radix (10 for
a decimal calculator, 2 for a binary computer), then the scaled
coefficients TA, TBp, TCp 2 , TDp 3 will have the same significant
digits as the original coefficients A, B, C, D ; only the
decimal or binary points will have shifted. Therefore the same
should be true of the scaled zeros ?X, ?Y, 9Z , even in the +ace
of roundoff. Of course, the relationship between the scaled
zeros and the original zeros X, Y, Z must break down when the
scale factors are so big or so tiny that the scaled coefficients
or zeros over/underflow; ideally the relationship should not
break down for any other reason. In practice, most algorithms
are vulnerable to spurious over/underflow. For instance, the
discriminant q in QDRTC and the quotients r and t in QBC
can easily over/underflow even though the coefficients and zeros
lie well within range. Conscientious programmers introduce scale
factors into their programs either to forestall undeserved over!
underflows or to recover from them. The task is not eased by the
absence from most programming languages of any reference to over/
underflow other than an implication that the crime will be
punished by termination of the program's execution.

Here is how a scale factor T can be chosen to prevent spurious
over/underflow during the solution of a quadratic equation
Ax2 + Bx + C = 0 . If. A - 0 or C = 0. the solution i.s obvious,
Otherwise choose T tQ be a power of the radix near VIAI VICI,
and so chosen that neither A/T nor C/.- can over/underFlow. Then
I(A/T) (C/T)I cannot be orders of magnitude larger or smaller than
I . Next compare IBI with IT if IBI is so much bigger" than
T that IBI + T rounds to IBI , then the quadratic's roots are
approximated accurately enough by -C/B and -B/A . Otherwise
call QDRTC(A/T, B/IT, C/T, X1 + ZY,, X2 + ZY 2) , allowing
underflows to flush to 0 if nothing better is available. No
undeserved overflow will occur.

Similar ideas can help suppress spurious over/underflows when
solving the cubic. Roughly speaking, when A/B is very tiny,
much tinier than roundoff in numbers near I , but B/C is not
tiny at all, then the cubic's biggest zero must be very nearly
-B/A , and the other zeros can be found by setting A "= 0 and
solving the resulting quadratic equation. And when D/C is very
tiny but C/B is not, the tiniest zero is very nearly -D/C .
and so on. When neither A/B nor D/C is very tiny, the cu.bic
and its zeros can be scaled and computed in the ordinary way.

15

